Triviality of Bloch and Bloch-Dirac bundles

نویسنده

  • Gianluca Panati
چکیده

In the framework of the theory of an electron in a periodic potential, we reconsider the longstanding problem of the existence of smooth and periodic quasi-Bloch functions, which is shown to be equivalent to the triviality of the Bloch bundle. By exploiting the time-reversal symmetry of the Hamiltonian and some bundle-theoretic methods, we show that the problem has a positive answer in any dimension d ≤ 3, thus generalizing a previous result by G. Nenciu. We provide a general formulation of the result, aiming at the application to the Dirac equation with a periodic potential and to piezoelectricity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

On characterizations of hyperbolic harmonic Bloch and Besov spaces

‎We define hyperbolic harmonic $omega$-$alpha$-Bloch space‎ ‎$mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and‎ ‎characterize it in terms of‎ ‎$$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}‎},$$ where $0leq gammaleq 1$‎. ‎Similar results are extended to‎ ‎little $omega$-$alpha$-Bloch and Besov spaces‎. ‎These obtained‎...

متن کامل

Bloch-Zener oscillations across a merging transition of Dirac points.

Bloch oscillations are a powerful tool to investigate spectra with Dirac points. By varying band parameters, Dirac points can be manipulated and merged at a topological transition toward a gapped phase. Under a constant force, a Fermi sea initially in the lower band performs Bloch oscillations and may Zener tunnel to the upper band mostly at the location of the Dirac points. The tunneling proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007